我们银河系早期形成历史的时间分辨图片

  为了揭示我们银河系的集会历史,我们需要了解诞生多少恒星,当时是从什么材料和什么轨道上出生的。这需要大量恒星样本延伸至最古老的年龄(约14 Gyr)9,12的精确年龄。亚巨星...

  为了揭示我们银河系的集会历史 ,我们需要了解诞生多少恒星 ,当时是从什么材料和什么轨道上出生的 。这需要大量恒星样本延伸至最古老的年龄(约14 Gyr)9,12的精确年龄 。亚巨星是由氢壳融合所维持的恒星,可以是出于这些目的的独特示踪剂,因为它们存在于允许最精确和直接年龄确定的短暂恒星进化阶段 ,因为它们的亮度是对年龄的直接度量。此外,从其光球表面的光谱确定的化学元素组成准确地反映了其出生物质成分数十亿年前。这使得次级构成了银河考古学的最佳实用示踪剂,即使与主要的关闭恒星相比 ,其表面丰度可能会因原子扩散效应而改变 。但是,由于其进化阶段的寿命短,次巨星相对较少 ,并且大型调查对于建立具有良好光谱的这些物体的大量样本至关重要,而这些对象过去曾在过去尚未可用。   随着Gaia Mission14,15的最新数据释放(EDR3)以及Lamost光谱调查的最新数据释放(DR7)16,17,我们根据其在有效温度(TEFF) - 少量(MK)图(MK)图(图1A)中的位置确定了一组约250,000个亚巨星。这些子巨星的年龄(τ)是通过与贝叶斯方法拟合拟合的Yessei -yale(yy)恒星等异孔估计的 ,它采用了贝叶斯方法,该方法借鉴了天体距离(视差),明显的幅度(波动) ,光谱化学丰度([fe/h] ,[fe/h],[fe/h],α ,α,α,α ,α,m 。Ti),Teff和Mk。如图1B所示 ,样本星的中位相对年龄不确定性在整个年龄范围从1.5 GYR到宇宙的年龄范围仅为7.5%(13.8 GYR;参考文献19)。我们样本的较低年龄限制是我们方法固有的:因此,年轻的和更多的发光子巨人可以与不同的恒星进化阶段混淆,这是较老的恒星的水平分支相 ,这将导致严重的样品污染 。该样本构成了恒星的样本量100倍,年龄相对精确且一致的年龄为20,21。此外,它是一个大型样本 ,涵盖了银河系中的大量空间体积(图1C)和大多数相关范围的年龄和金属性(1.5 Gyr)< τ < 13.8 Gyr, and −2.5 < [Fe/H] < 0.4). The sample also has a straightforward spatial selection function that allows us to estimate the space density of the tracers. These ingredients enable an alternative view of the Milky Way’s assembly history, especially the early formation history.   The photospheric metallicity of any subgiant star of age τ reflects the element composition of the gas from which it formed at the epoch τ Gyr ago. The overall distribution of these stellar metallicities at different epochs, p(τ, [Fe/H]), thus encodes the chemical enrichment history of our Milky Way galaxy. Figure 2a presents this distribution for our data. It shows that the age–metallicity distribution exhibits a number of prominent and distinct sequences, including at least two age-separated sequences with [Fe/H] >-1 ,以及一系列仅在低金属性的旧恒星,[fe/h]< −1. The density of p(τ, [Fe/H]) may change with stellar orbit or Galactocentric radius, in the range our sample covers (6–14 kpc; Fig. 1). Yet, the ‘morphology’ of the distribution varies only slightly, enabling us to focus on the radially averaged distribution p(τ, [Fe/H]) here.   It turns out that the complexity of p(τ, [Fe/H]) (Fig. 2a) can be unravelled by dividing the sample into two subsamples using stellar quantities that are neither τ nor [Fe/H]: the angular momentum Jϕ (also denoted as LZ) and the ‘α-enhancement’, [α/Fe]. Extensive observations indicate that the majority of stars in the Milky Way formed from gradually enriched gas on high-angular momentum orbits, or the extended (‘thin’) disk4,22, at high Jϕ and low [α/Fe]. It is also well established that the distribution of Galactic stars in the [α/Fe]–[Fe/H] plane is bimodal, with a high-α sequence reflecting rapid enrichment and a low-α sequence reflecting gradual enrichment, which indicates a natural way to divide any sample in the [α/Fe]–[Fe/H] plane8. This inspired our approach to divide our sample into two, separating the dominant sample portion of gradually enriched disk stars with high angular momentum from the rest. Specifically, we used the cut   which is illustrated as a yellow shaded area in Fig. 2b, c. The resulting subsamples in the τ–[Fe/H] plane are shown in Fig. 2d, e, where it is crucial to recall that the sample split involved neither of the quantities on the two axes, τ and [Fe/H]. As we want to focus first on the Milky Way’s elemental enrichment history, rather than its star-formation history, we normalize the distribution p(τ, [Fe/H]) at each [Fe/H] to yield p(τ | [Fe/H]), the age distribution at a given [Fe/H].   Figure 2d, e shows that this cut in angular momentum and [α/Fe] separates the Milky Way’s enrichment history neatly into two distinct age regimes, with a rather sharp transition at τ  8 Gyr. We will therefore refer to these two portions, not clearly apparent in earlier data, as and . The distribution of clearly exhibits a V-shape23. This shape is presumably a consequence of the secular evolution of the dynamically quiescent disk; the metal-rich ([Fe/H]  −0.1) branch arises from stars that have migrated from the inner disk to near the Solar radius. The slope of that branch in then results from the (negative) radial metallicity gradient in the disk1 and the fact that the stars that have migrated more needed more time to do so, and are hence older. Analogously, we presume the lower branch of at [Fe/H]  −0.1 to arise from stars that were born further out and have migrated inwards6. A quantitative comparison with secular evolution models of the Galactic disk4,22 is part of separate ongoing work.   The older stars, reflected in , show two prominent sequences with distinct [Fe/H](τ) relations. The stars with −2.5 < [Fe/H] < −1.0 reflect the well-established stellar halo population of our Milky Way, whereas the more metal-rich sequence ([Fe/H]  −1) reflects the Milky Way’s inner, high-α (thick) disk24; this designation as an old disk component is also justified by the stars’ angular momentum, as we will show below.   The morphology of the old disk sequence in is the most striking feature in Fig. 2e; it reveals an exceptionally clear, continuous and tight age–metallicity relation from [Fe/H]  −1 at 13 Gyr ago all the way to [Fe/H]  0.5 at 7 Gyr ago. A simple model for p(τ | [Fe/H]) of this sequence (Supplementary Information) finds an intrinsic age dispersion of less than 0.82  Gyr at a given [Fe/H] across this 6 Gyr interval (Extended Data Fig. 1). Given the sequence’s slope, this implies that the [Fe/H] dispersion at a given age is smaller than 0.22 dex across the 1.5 dex range in [Fe/H].   Both the halo and old disk sequences extend to [Fe/H]  −1. However, at that [Fe/H] value, the old disk sequence is approximately 2 Gyr older than the halo sequence, leading to a Z-shaped structure in . This feature is a second aspect of the distribution that has not, to our knowledge, been seen before21.   Tentative hints for some of these features in p(τ | [Fe/H]) have been seen in earlier work24,25 (see the discussion in the Supplementary Information) but these studies lacked the sample size or precision for definitive inferences about the Galactic formation history. Figure 2 shows clearly that the old, high-α ‘thick’ disk of our Milky Way started to form approximately 13 Gyr ago, which is only 0.8 Gyr after the Big Bang19, and extended over 5–6 Gyr, and the interstellar stellar medium (ISM) forming the stars was continually enriched by more than 1 dex, from [Fe/H]  −1 to 0.5. The tightness of this [Fe/H]–age sequence implies that the ISM must have remained spatially mixed thoroughly during this entire period. Had there been any radial (or azimuthal) [Fe/H] variations (or gradients) in excess of 0.2 dex in the star-forming ISM at any time, this would have increased the resulting [Fe/H]–age scatter beyond what is seen. Such gradients, along with orbital migration, are the main reason that the later Galactic disk shows a considerably higher [Fe/H] dispersion at a given age4,26. The results also show that the formation of the Milky Way’s old, α-enhanced disk overlapped in time with the formation of the halo stars: the earliest disk stars are 1–2 Gyr older than the major halo populations at [Fe/H]  −1 (see the Z-shaped structure).   In Fig. 3 we examine the distribution more closely by separating stars with at least modest angular momentum, Jϕ >500 kpc km s – 1,来自这些恒星几乎径向甚至逆行轨道< 500 kpc km s–1. This further sample differentiation by angular momentum leads again to two nearly disjoint p(τ | [Fe/H]) distributions. The first (Fig. 3, upper panel), with mostly [Fe/H] >-1 ,由我们已经归因于旧磁盘的紧密p(τ| [fe/h])序列主导。第二个主要[Fe/H]< −1.2, reflects the halo.   Note that Fig. 3, lower panel shows a distinct set of stars with Jϕ < 500 kpc km s–1, for which the p(τ | [Fe/H]) locus indicates that they are the oldest and most metal-poor part of the old disk sequence (see also Extended Data Fig. 2). These stars indicate that some of the oldest members of the old disk sequence were present during an early merger event, by which they were ‘splashed’ to low-angular-momentum orbits27,28. This ancient merger event is presumably the merger with the Gaia-Enceladus satellite galaxy11 (also known as Gaia Sausage10; hereafter Gaia-Sausage-Enceladus), which has contributed most of the Milky Way’s halo stars7,29. The fact that the splashed old disk stars with very little angular momentum are exclusively seen at τ  11 Gyr constitutes strong evidence that the major merger process between the old disk and the Gaia-Sausage-Enceladus satellite galaxy was largely completed 11 Gyr ago. This epoch is 1 Gyr earlier than previous estimates that were based on the lower age limit of the halo stars, 10 Gyr (refs. 11,21,30).   Figure 3 shows the volume-corrected two-dimensional distribution p(τ, [Fe/H]) (see the Supplementary Information for the correction of the volume selection effect), rather than the p(τ | [Fe/H]) of Fig. 2. Figure 3 reveals a remarkable feature, namely that the star-formation rate of the old disk reached a prominent maximum at around 11.2 Gyr ago, apparently just when the merger with the Gaia-Sausage-Enceladus satellite galaxy was completed, and then continuously declined with time. The most obvious interpretation of this coincidence is that the perturbation from the Gaia-Sausage-Enceladus satellite galaxy greatly enhanced the star formation of the old disk. Note that this star-formation peak among the old disk stars ~11 Gyr ago is very consistent with earlier indications of such a peak based on abundances only31.   To put our results into the bigger picture of galaxy formation and evolution, the multiple assembly phases are seen to be universal among present-day star-forming galaxies. Using the IllustriesTNG simulation, Wang et al.32 showed that galaxy mergers and interactions have played a crucial role in inducing gas inflow, resulting in multiple star formation episodes, intermitted by quiescent phases. Observationally, the best testbed for this theoretical picture would be here at home within our Galaxy. Our study has demonstrated the power of such tests for galactic assembly and enrichment history in the full cosmic timeline, from the very early epoch (τ  13 Gyr or redshift z >10)到当前时间 。
http://http://www.0517kq.com/news/show-8109.html/sitemaps.xml http://http://www.o-press.com/news/show-251.html/sitemaps.xml http://http://www.0517kq.com/news/show-8322.html/sitemaps.xml http://http://www.0517kq.com/news/show-8345.html/sitemaps.xml http://http://www.0517kq.com/news/show-8093.html/sitemaps.xml http://http://www.o-press.com/news/show-333.html/sitemaps.xml http://http://www.0517kq.com/news/show-8335.html/sitemaps.xml http://http://www.0517kq.com/news/show-8200.html/sitemaps.xml http://http://www.o-press.com/news/show-357.html/sitemaps.xml http://http://www.o-press.com/news/show-39.html/sitemaps.xml

本文来自作者[qingdaomobile]投稿,不代表青鸟号立场,如若转载,请注明出处:https://qingdaomobile.com/zskp/202506-27246.html

(4)

文章推荐

  • 【广西北海精装修二手房,北海拎包入住精装房】

    广西北海买二手房应注意那些?1、在购买二手房时,需要关注房屋产权是否明晰。有时房屋可能有多个共有人,如继承人、家庭成员或夫妻双方,因此最好与所有共有人签订买卖合同。否则,部分共有人擅自处分共有财产的买卖合同可能无效。土地情况是否清晰也是购买二手房时需要考虑的问题。2、购房资格要求。购买北海的二手房

    2025年02月25日
    75
  • 曹冲技能来源/曹冲技能来源于哪里

    三国杀里伏皇后,曹聪原来的技能是什么?改了之后有什么区别?首先来看伏皇后的改动,她的技能“惴恐”在改动前的效果是,当其他角色回合开始时,如果伏皇后已受伤,可以与其拼点,如果赢了,则该角色跳过出牌阶段;如果输了,该角色与她的距离视为1,直到回合结束。三国杀三将曹冲技能1、三国杀中三将曹冲的技能如下

    2025年03月06日
    55
  • 【江南大学财务数,江南大学财务处税号】

    江南大学财务处的固话是多少1、江南大学财务处的联系方式如下:固话号码有两个,分别是:0510-859131590510-85800071若需要发送文件或文档,可以使用他们的传真服务,号码为:传真:0510-85913143请确保在联系时提供准确的信息,以便及时得到回应。2、在查询江南大学

    2025年03月20日
    60
  • 昨日北京新增13例/北京昨日新增17例,详情来了

    北京昨日新增确诊病例22例的具体情况是怎么样的?月20日0时至24时,北京市新增新冠肺炎确诊病例22例,男性病例11例,女性病例11例。年龄平均42岁,最小1岁7个月,最大86岁。北京户籍10例,外省户籍12例。丰台区10例,大兴区8例,海淀区3例,通州区1例。临床分型轻型3例,普通型19例。已完

    2025年04月04日
    50
  • 【专家称上海这次疫情规模比武汉大,听说上海疫情很严重】

    专家称上海此次疫情规模比武汉还要大,为何上海会出现如此大规模的疫情...近来当地人员的疫情防控意识有所松懈有关。而且仍有极少数不配合防控的群众给抗疫工作带来很大麻烦。所以导致上海出现如此大规模的疫情。专家称上海这次疫情规模比武汉大,主要是根据这两个地方疫情的对比,武汉当年的疫情虽然确诊的人数比较多

    2025年04月05日
    59
  • 力疫情的简单介绍

    面对新冠肺炎疫情,我们应该如何提高免疫力呢?1、保持警惕,遵守防疫措施:疫情尚未结束,我们要时刻保持警惕,遵守各项防疫措施。比如,出门戴口罩、勤洗手、保持社交距离等,这些都是减少病毒传播风险的有效方法。增强自身免疫力:保持良好的生活习惯,如合理饮食、充足睡眠、适当运动等,都有助于增强自身免疫力,从

    2025年04月05日
    48
  • 管理措施管理(管理措施是什么)

    管理措施有哪些1、管理措施主要包括以下几个方面:制定管理策略这是实施管理措施的首要步骤。明确组织的目标,基于目标来制定适应组织发展的管理策略。策略内容涵盖资源分配、风险管理、人员配置等,旨在确保组织能够高效运行。组织管理流程有效的管理流程是确保组织顺畅运作的关键。2、安全管理措施主要包括以下几

    2025年04月09日
    44
  • 【河南新乡卫辉疫情最新消息,河南省新乡市卫辉市最新疫情】

    卫辉疫情严重吗现在卫辉疫情不严重现在。根据查询相关信息截止于2022年12月6日卫辉无新增病例。当地防疫政策为:新乡地区以外来(返)卫人员须提前报备,持48小时内核酸检测阴性证明,抵卫后实行落地检,根据检测结果和健康状况,按相关规定执行。有出行、就医等日常需求的人员按需进行核酸检测。封了。根据查询

    2025年05月08日
    39
  • 本田缤智怎么样/本田缤智怎么样加速快

    开本田缤智怎么样1、开本田缤智是一款值得考虑的实用型家用SUV。以下是具体分析:空间利用:缤智内部空间宽敞,后排座椅灵活,能够轻松容纳乘客舒适休息。尽管5版本没有配备天窗,但整体空间设计仍然具有吸引力。动力方面:5升车型拥有130马力,动力表现与6和8版本相比并不逊色。节能模式下的动力响应稍显保守

    2025年06月13日
    17
  • 魔兽世界8.0属性换算/魔兽世界各项属性

    魔兽世界8.0射击猎属性选择优先级魔兽世界0射击猎属性选择优先级如下:敏捷:这可是射击猎的首要属性,优先级最高,能加就加,别犹豫!精通:紧随敏捷之后,稳定的收益让你在战斗中更加游刃有余。急速:有4个固定的阈值点,在这些点上急速的收益极高,能超过精通哦,记得根据网络延迟自行调高1%-2%。在魔兽世界

    2025年06月14日
    17

发表回复

本站作者后才能评论

评论列表(4条)

  • qingdaomobile
    qingdaomobile 2025年06月17日

    我是青鸟号的签约作者“qingdaomobile”!

  • qingdaomobile
    qingdaomobile 2025年06月17日

    希望本篇文章《我们银河系早期形成历史的时间分辨图片》能对你有所帮助!

  • qingdaomobile
    qingdaomobile 2025年06月17日

    本站[青鸟号]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育

  • qingdaomobile
    qingdaomobile 2025年06月17日

    本文概览:  为了揭示我们银河系的集会历史,我们需要了解诞生多少恒星,当时是从什么材料和什么轨道上出生的。这需要大量恒星样本延伸至最古老的年龄(约14 Gyr)9,12的精确年龄。亚巨星...

    联系我们

    邮件:青鸟号@sina.com

    工作时间:周一至周五,9:30-18:30,节假日休息

    关注我们